
Decidability of Modular Logics for Concurrency

Radu Mardare?

Aalborg University, Denmark

Abstract. The modular logics we approach in this paper are logics for concurrent
systems that reflect both behavioral and structural properties of systems. They
combine dynamic modalities that express behavioural properties of a system with
polyadic modalities that join properties of subsystems. Spatial and Separation
Logics are examples of modular logics. Being the complex algebraic-coalgebraic
semantics, these logics have interesting decidability properties. In this paper we
provide a taxonomy of the decision problems for a class of modular logics with
semantics based on CCS processes.

1 Introduction

The success of Process Algebras [2] in modelling a wide class of concurrent and dis-
tributed systems from Computer Science and Artificial Intelligence to Systems Biology
and Biochemistry, raises the necessity to develop analysis techniques for studying and
predicting the behaviour of modelled systems. This is the origin of the idea of defin-
ing complex query languages specifically designed to express temporal and structural
properties of the systems. The dual nature of these calculi—algebraic/equational syn-
tax versus coalgebraic operational semantics, makes them particularly appropriate for a
modal logic-based approach.

The process semantics for modal logics are special cases of Kripke semantics: they
involve structuring the classes of processes as Kripke models with accessibility relations
based on the syntax and the semantics of processes. On one hand, the accessibility rela-
tions induced by transition systems have been considered with Hennessy-Milner logic
[14] and temporal logics [24]. In addition, mobile, concurrent [12, 22] and dynamic-
epistemic [16, 19, 15] features have been added to express more complex semantics. On
the other hand, the spatial logics [7, 3] use accessibility relations that reflect syntactic
properties of processes. They are intensional logics [23] able to differentiate bisimilar
processes with different structures by using modular operators – the logical counter-
parts of the program constructors of process calculi. Thus, the parallel operator speci-
fies properties of complementary (parallel) modules of a program; its adjoint, the guar-
antee operator, quantifies on possible interactive contexts of a program. Some spatial
logics consider also operators for specifying the space of computation, such as ambient
logic [7], or operators for name passing and name restrictions in process calculi [3], but
these are outside the scope of this paper.

? Research supported by Sapere Aude: DFF-Young Researchers Grant 10-085054 of the Danish
Council for Independent Research.

By combining the dynamic and the modular operators, one gets an interesting polyadic
modal logic. The parallel operator, for instance, is a modal operator of arity 2 that sat-
isfies the axioms of associativity, commutativity, and modal distribution [20, 17, 18].
Similar operators have been studied, e.g., in the context of Arrow Logic [1, 13], of Rel-
evant and Substructural Logics [25], of linear and intensional logics – see [7] for a
detailed discussion.

In spite of the similarities with other logics, the combination of dynamic and mod-
ular operators raises genuinely new problems concerning decidability and complexity
for satisfiability, validity, and model checking against the semantics based on process
algebras. In this paper we study and classify by decidability the modular logics for a
fragment of CCS [21]. In spite of the restrictive semantics, these logics are already
showing interesting behaviours. In this paper we survey the results of [4, 11] (the cases
PML4 and S OL4) and complete them with new results which improve the state of art
and allow us to organize the taxonomy presented in Table 1. We also present some proof
methods for process logics that can be further used in various contexts.

Name Signature Model Satisfiability
checking

PML1 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ decidable unknown
PML2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | φ . φ decidable decidable
PML3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α, α〉φ | φ . φ decidable decidable
PML4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ | φ . φ undecidable undecidable

S OL0 φ := 0, 1 | ¬φ | φ ∧ φ | ∃x.φ | 〈x〉φ decidable unknown
S OL1 φ := 0, 1 | ¬φ | φ ∧ φ | >|φ | ∃x.φ | 〈x〉φ decidable undecidable
S OL2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ decidable undecidable
S OL3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | > . φ undecidable undecidable
S OL4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | 〈x〉φ | � φ | φ . φ undecidable undecidable

Table 1. The decidability problems for modular logics

In [4] it is proved that validity/satisfiability and model checking are undecidable
for the logic combining the modular operators with a modality � that encodes the τ-
transitions (PML4) and with second order modalities of type ∃x.〈x〉φ (S OL4). We im-
prove these results by showing that the undecidability of satisfiability for modular log-
ics with second order quantifiers derives from the undecidability of a more basic logic
that contains second order quantifiers but does not contain the guarantee or the par-
allel operators. The expressive power of >|φ is sufficient to generate, in this context,
undecidability for satisfiability (> is “true”). Moreover, the model-checking problem
remains undecidable for any similar logic that can express at least > . φ (which is less
expressive than the guarantee operator). On the other hand, we prove that the absence of
guarantee operator makes the model checking decidable. For the logics without second
order operators, we prove that by replacing � (studied in [4]) with a class of operators
of type 〈α, α〉, that expresses a synchronization of the action α and its co-action, we
obtain a decidable logic even in the presence of parallel and guarantee operators. The
same result is obtained by replacing � with the class of dynamic operators 〈α〉 which

encode atomic actions. We also show that the model-checking problem is decidable for
the logic combining parallel and � operators, in the absence of guarantee operator.

2 Preliminaries on Process Algebra

In this section we recall basic notions of process algebra and establish the terminology
and the notations. We introduce a finite fragment of CCS [21] which will be used later
as the semantics for modular logics. In spite of its simplicity, this fragment is already
sufficient to rise important decidability problems for the modular logics.

Definition 1 (CCS processes). Let Σ be a countable set of actions and 0 < Σ a constant
called null process. The class P of CCS processes is introduced, for arbitrary α ∈ Σ, by

P := 0 | α.P | P|P.

Definition 2 (Structural congruence). The structural congruence is the smallest equiv-
alence relation on P such that

1. (P|Q)|R ≡ P|(Q|R) 2. P|0 ≡ P 3. P|Q ≡ Q|P
4. If P ≡ P′, then for any α ∈ Σ and Q ∈ P, α.P ≡ α.P′ and P|Q ≡ P′|Q.

Definition 3 (Operational semantics). Let τ < Σ ∪ P and consider an involution on Σ
that associates to each action α ∈ Σ its co-action α, such that α = α and α , α. The
operational semantics presented bellow defines a labeled transition system T : P →
(Σ ∪ {τ}) × P, where T(P) = (µ,Q) is denoted by P

µ
−→ Q for any µ ∈ Σ ∪ {τ}.

α.P
α
−→ P , α ∈ Σ α.P|α.Q

τ
−→ P|Q , α ∈ Σ

P ≡ Q P
µ
−→ P′

Q
µ
−→ P′

, µ ∈ Σ ∪ {τ}
P

µ
−→ P′

P|Q
µ
−→ P′|Q

, µ ∈ Σ ∪ {τ}

In this paper we consider, in addition, the transitions labeled by pairs of comple-

mentary actions (α, α) defined by α.P′|α.P′′|P′′′
α,α
−→ P′|P′′|P′′′. We call a process P

guarded if P ≡ α.Q for some α ∈ Σ and we use the notation Pk de f
= P|...|P︸︷︷︸

k

for k ≥ 1.

Definition 4. For an arbitrary process P ∈ P, let Act(P) ⊂ Σ be defined by

1. Act(0)
de f
= ∅ 2. Act(α.P)

de f
= {α} ∪ Act(P) 3. Act(P|Q)

de f
= Act(P) ∪ Act(Q).

For Ω ⊆ Σ and h,w nonnegative integers we define the class PΩ(h,w) of processes with
actions from Ω and syntactic trees bound by two dimensions: the depth h of the tree and
the width w (this represents the maximum number of structural congruent processes that
can be found in a node of the tree). PΩ(h,w) is introduced inductively on h.
PΩ(0,w) = {0};
PΩ(h+1,w) = {(α1.P1)k1 |...|(αi.Pi)ki , for k j ≤ w, α j ∈ Ω, P j ∈ P

Ω
(h,w),∀ j = 1..i}.

Observe that if Ω ⊆ Σ is a finite set, then PΩ(h,w) is a finite set of processes.

In what follows, we introduce structural bisimulation, a relation on processes sim-
ilar to the pruning relation proposed for trees (static ambient processes) in [5]. This
relation will play an essential role in establishing the bounded model property for some
modular logics. The structural bisimulation is indexed by a set Ω ⊆ Σ of actions and
by two nonnegative integers h,w. Intuitively, two processes are Ω-structural bisimilar
on size (h,w) if they look indistinguishable for an external observer that sees only the
actions in Ω, does not follow a process for more than h transition steps, and cannot
distinguish more than w cloned parallel subprocesses of an observed process.

Definition 5 (Ω-Structural Bisimulation). Let Ω ⊆ Σ and h,w two nonnegative inte-
gers. The Ω-structural bisimulation on P, ≈Ω(h,w), is defined inductively as follows.
If P ≡ Q ≡ 0, then P ≈Ω(h,w) Q;
If P . 0 and Q . 0, then

P ≈Ω(0,w) Q always.
P ≈Ω(h+1,w) Q iff for any i ∈ 1..w and any α ∈ Ω:

– P ≡ α.P1|...|α.Pi|P′ implies Q ≡ α.Q1|...|α.Qi|Q′, P j ≈
Ω
(h,w) Q j, j = 1..i;

– Q ≡ α.Q1|...|α.Qi|Q′ implies P ≡ α.P1|...|α.Pi|P′, Q j ≈
Ω
(h,w) P j, j = 1..i.

We emphasize further some properties of Ω-structural bisimulation. The proofs of
these results can be found in Appendix.

Lemma 1 (Equivalence). ≈Ω(h,w) is an equivalence relations on P.

Lemma 2 (Congruence). Let Ω ⊆ Σ be a set of actions.
1. If P ≈Ω(h,w) Q, then α.P ≈Ω(h+1,w) α.Q.
2. If P ≈Ω(h,w) P′ and Q ≈Ω(h,w) Q′, then P|Q ≈Ω(h,w) P′|Q′.

For nonnegative integers h, h′,w,w′ we convey to write (h′,w′) ≤ (h,w) iff h′ ≤ h
and w′ ≤ w.

Lemma 3 (Restriction). Let Ω′ ⊆ Ω ⊆ Σ and (h′,w′) ≤ (h,w). If P ≈Ω(h,w) Q, then
P ≈Ω

′

(h′,w′) Q.

Lemma 4 (Split). If P′|P′′ ≈Ω(h,w1+w2) Q for some Ω ⊆ Σ, then there exist Q′,Q′′ ∈ P
such that Q ≡ Q′|Q′′ and P′ ≈Ω(h,w1) Q′, P′′ ≈Ω(h,w2) Q′′.

Lemma 5 (Step-wise propagation). If P ≈Ω(h,w) Q and P
α
−→ P′ for some α ∈ Ω ⊆ Σ,

then there exists a transition Q
α
−→ Q′ such that P′ ≈Ω(h−1,w−1) Q′; if P

α,α
−→ P′, then

there exists a transition Q
α,α
−→ Q′ such that P′ ≈Ω(h−2,w−2) Q′.

As Σ is a denumerable set, assume a lexicographic order�⊆ Σ ×Σ on it. Then, any
element α ∈ Σ has a successor denoted by succ(α) and any finite subset Ω ⊂ Σ has a
maximum element denoted by sup(Ω). We define Ω+ = Ω ∪ {succ(sup(Ω))}.

The next lemma states that for any finite set Ω and any nonnegative integers h,w,
the equivalence relation ≈Ω(h,w) partitions the class P of processes in equivalence classes
such that each equivalence class has a representative in the finite set PΩ

+

(h,w).

Lemma 6 (Representation Theorem). For any finite set Ω ⊆ Σ, any nonnegative inte-
gers h,w and any process P ∈ P, there exists a process Q ∈ PΩ

+

(h,w) such that P ≈Ω(h,w) Q.

3 Modular Logic

In this section we introduce the modular logics. One class contains the propositional
modular logics (PMLs) that extend the classic propositional logic with modular and
dynamic operators. The other class consists of second order modular logics (SOLs)
that are equipped with variables and quantifiers over modalities.

Definition 6 (Syntax). Let Σ and X be two disjoint countable sets. Consider the logics
defined for arbitrary α ∈ Σ and x, y ∈ X as follows.

PML1 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ
PML2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | φ . φ
PML3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α, α〉φ | φ . φ
PML4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ | φ . φ

S OL0 φ := 0, 1 | ¬φ | φ ∧ φ | ∃x.φ | 〈x〉φ
S OL1 φ := 0, 1 | ¬φ | φ ∧ φ | >|φ | ∃x.φ | 〈x〉φ
S OL2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ
S OL3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | > . φ
S OL4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | 〈x〉φ | � φ | φ . φ

Here 0 and 1 are modal operators of arity 0 that characterize the null process and
the guarded processes respectively.

The semantics is given for the class P of CCS processes as frames. In particular,
a definition of the satisfiability operator, P |= φ that relates a process P ∈ P with the
property φ written in the syntax of PMLs, is given.

Definition 7 (Semantics of PMLs). Let P ∈ P and φ a formula of PMLi, i = 1..4. The
relation P |= φ is defined inductively as follows.

P |= 0 iff P ≡ 0.
P |= 1 iff there exist α ∈ Σ and Q ∈ P such that P ≡ α.Q.
P |= ¬φ iff P 6|= φ.
P |= φ ∧ ψ iff P |= φ and P |= ψ.
P |= φ|ψ iff P ≡ Q|R, Q |= φ and R |= ψ.
P |= >|φ iff P ≡ Q|R and R |= φ.
P |= �φ iff there exists a transition P

τ
−→ P′ and P′ |= φ.

P |= 〈α〉φ iff there exists a transition P
α
−→ P′ and P′ |= φ.

P |= 〈α, α〉φ iff there exists a transition P
α,α
−→ P′ and P′ |= φ.

P |= φ . ψ iff for any Q ∈ P, Q |= φ implies P|Q |= ψ.
P |= > . φ iff for any Q, P|Q |= φ.

Observe that, equivalently, we can introduce the semantics in the modal logic fashion
by defining a frame for PMLs as the structure
M = (P, i,R0,R1, (Rα)α∈Σ , (R(α,α))α∈Σ ,Rτ,R|,R.) where

i : P → 2{0} is the interpretation function defined by i(P) = {0} for P ≡ 0 and i(P) = ∅

else;

R0 = {0} and R1 = {α.P : α ∈ Σ, P ∈ P} are accesibility relations of arity 1;
(Rα)α∈Σ is a class of accessibility relations Rα ⊆ P × P indexed by actions and defined
by (P,Q) ∈ Rα iff P

α
−→ Q.

(R(α,α))α∈Σ is a class of accessibility relations indexed by pairs of complementary actions

and defined by (P,Q) ∈ R(α,α) iff P
α,α
−→ Q.

Rτ is an accessibility relations Rτ defined by (P,Q) ∈ Rα iff P
τ
−→ Q.

R| ⊆ P × P × P is a relation defined by (P,Q,R) ∈ R| iff P ≡ Q|R
R. ⊆ P × P × P is a relation defined by (P,Q,R) ∈ R. iff R ≡ P|Q.
In this presentation 0, 1 are modal operators of arity 0, 〈α〉, 〈α, α〉 and � are modal
operators of arity 1, while | and . are modal operators of arity 2.

Before introducing the semantics of second order modular logics (SOLs), we should
stress the fact that in our syntax X is a set of variables that will be interpreted over Σ.
As usual, we call an occurrence of a variable x ∈ X in a formula φ (written in the syntax
of S OLi, i = 0, . . . , 4) a free occurrence if it is not in the scope of a quantifier ∃x. We
call a variable x a free variable in a formula if it has at least one free occurrence1. A
formula φ is closed if it contains no free variables; else, we call it open. A valuation
v : X ↪→ Σ is a partial function that associates values in Σ to some variables in X. If v
is a valuation, x ∈ X is a variable that is not in the domain of v, and α ∈ Σ, we denote
by v{x→α} the valuation v′ that extends v with v′(x) = α.

The semantics of second order modular logics (SOLs) is given by the satisfiability
operator, P, v |= φ that relates a process P ∈ P and valuation v : X → Σ interpreting the
free variable of φ, to a well formed formula φ of S OLi, i = 0, . . . , 4.

Definition 8 (Semantics of SOLs). The relation P, v |= φ is defined as follows.
P, v |= 0 iff P ≡ 0.
P, v |= 1 iff there exists α.Q ∈ P such that P ≡ α.Q.
P, v |= ¬φ iff P, v 6|= φ.
P, v |= φ ∧ ψ iff P, v |= φ and P, v |= ψ.
P, v |= φ|ψ iff P ≡ Q|R, Q, v |= φ and R, v |= ψ.
P, v |= >|φ iff P ≡ Q|R, Q, v |= φ.
P, v |= �φ iff P

τ
−→ P′ and P′, v |= φ.

P, v |= 〈x〉φ iff P
v(x)
−→ P′ and P′, v |= φ.

P, v |= 〈x〉φ iff P
v(x)
−→ P′ and P′, v |= φ.

P, v |= φ . ψ iff for any process P′ ∈ P, P′, v |= φ implies P′|P, v |= ψ.
P, v |= > . φ iff for any process P′, P′|P, v |= φ.
P, v |= ∃x.φ iff there exists α ∈ Σ such that P, v{α→x} |= φ.

In addition to the boolean operators we also introduce the next derived operators
that will be used both with PMLs and SOLs.

>
de f
= 0 ∨ ¬0 ⊥

de f
= ¬> φ ‖ ψ

de f
= ¬(¬φ|¬ψ)

◦φ
de f
= (¬φ) . ⊥ φ∀

de f
= φ ‖ > α.φ

de f
= 1 ∧ 〈α〉φ

1 As usual, we assume that variables occurring under different boundaries or both bound and
free do not clash, even if the same (meta-)symbol x ∈ X is used to name them.

> and ⊥ are boolean constants, hence >|φ and > . φ are particular instances of ψ|φ
and ψ . φ respectively. Notice that in the logics where φ|ψ is a legal construction, 1 can

be defined from 0 by 1
de f
= ¬0 ∧ (0 ‖ 0). Observe also that the operator ◦, that can

be defined in a logic where φ . ψ is legal, is a universal modality and ◦φ encodes the
validity of φ over P.

Definition 9. A formula φ of PMLs is satisfiable if there exists a process P ∈ P such
that P |= φ; it is valid (a validity) if for any process P ∈ P, P |= φ. A closed formula φ
of SOLs is satisfiable if there exists a process P ∈ P such that P, ∅ |= φ, where ∅ is the
empty valuation; it is valid (a validity) if for any process P ∈ P P, ∅ |= φ.

We denote the fact that φ is a validity by |= φ. Hereafter, we call the satisfiabil-
ity problem (validity problem) for a logic against a given semantics the problem of
deciding if an arbitrary formula is satisfiable (valid). The model checking problem
for PMLs consists in deciding, for an arbitrary formula φ and an arbitrary process P, if
P |= φ. The same problem for SOLs consists in deciding, for an arbitrary closed formula
φ and an arbitrary process P, if P, ∅ |= φ.

Observe that Definition 9 implies that φ is a validity iff ¬φ is not satisfiable and
reverse, φ is satisfiable iff ¬φ is not valid. Consequently, satisfiability and validity are
dual problems implying that once one has been proved decidable/undecidable, the other
shares the same property.

4 Decision problems for Second Order Modular Logics

In [4] it is proved that S OL4 is undecidable. The proof is based on the method proposed
previously in [11] where it is shown that the second order quantifiers (over ambient
names) in ambient logic, in combination with the parallel operator, can induce undecid-
ability for satisfiability. A corollary of this result is the undecidability of S OL2. In what
follows, we use the same method for proving a stronger result, i.e. that satisfiability for
S OL1 is undecidable. This result shows that even in absence of the parallel operator (in
S OL1, the parallel operator can only appear in constructions of type >|φ) second order
quantification implies the undecidability of satisfiability for S OL2, S OL3 and S OL4.

In the second part of this section we approach the model checking problem. For
S OL2 model checking is decidable (implying decidability of model checking for both
S OL1 and S OL0), while for S OL3 model checking is undecidable (implying the unde-
cidability of model checking for S OL4). This shows that the expressivity of guarantee
operator is not the one responsable of the undecidability of model checking, but the
expressivity of > . φ. Notice that P, v |= > . φ implies that all processes having P as
subprocess have the property φ under the evaluation v, i.e. we face a universal quantifi-
cation over the class of upper processes of P. The satisfiability of S OL0 is open.

4.1 The satisfiability problem

In what follows, we prove that the satisfiability problem of S OL1 is equivalent with
the satisfiability problem of a fragment of first order logic known to be undecidable

for finite domains2. This fragment is FOL introduced inductively, for a single binary
predicate p(x, y) and for x, y ∈ X, by:

f := p(x, y) | ¬ f | f ∧ f | ∃x. f .
The semantics of FOL is defined for a finite domain D ⊆ Σ, for an interpretation

I ⊆ D × D of the predicate and for a valuation v : X → D as follows.
(D, I), v |= p(x, y) iff (v(x), v(y)) ∈ I
(D, I), v |= ¬ f iff (D, I), v 6|= f
(D, I), v |= f ∧ g iff (D, I), v |= f and (D, I), v |= g
(D, I), v |= ∃x. f iff there exists α ∈ D and (D, I), v{x→α} |= f .
It is known that satisfiability for FOL is undecidable. We will prove further that

satisfiability of FOL is equivalent with satisfiability for S OL1.

We begin by describing a special class P ⊆ P of processes that can be characterized
by the formulas of S OL1.

Consider the following derived operators in S OL1:
D(x) = 〈x〉0, R(x, y) = 1 ∧ 〈x〉〈y〉0 and
Model = [(1→ (∃xD(x)∨∃x∃yR(x, y)))|>] ∧ [∀x∀y((R(x, y)|>)→ (D(x)|>∧D(y)|>))].

We prove that Model characterizes the class P of process containing 0 and all pro-
cesses of type α1.0|...|αk.0 | αi1 .α j1 .0|...|αil .α jl .0 for i1, ..., il, j1, .., jl ∈ {1, ..k}.

Lemma 7. P, v |= Model iff either P ∈ P.

Proof. P, v |= (1 → (∃xD(x) ∨ ∃x∃yR(x, y)))|> iff for any Q s.t. P ≡ Q|R we have
that if Q |= 1 (i.e. Q ≡ α.Q′ for some α), then Q′ ≡ 0 or Q′ ≡ β.0. Hence, Q |= 1
implies Q ≡ α.0 or Q ≡ α.β.0 for some α, β ∈ Σ. Moreover, P, v |= ∀x∀y((R(x, y)|>) →
(D(x)|> ∧ D(y)|>)) iff P ≡ α.β.0|Q implies P ≡ α.0|β.0|P′.

Now, we describe a method for associating to each pair (D, I) used in the semantics
of FOL, a process PI

D ∈ P.
Let D ⊆ Σ be a finite set and I ⊂ D×D a relation on D. Suppose that D = {α1, ...αk}

with k ≥ 1, and I = {(αi1 , α j1), (αi2 , α j2), ..., (αil , α jl)}, with i1, ..., il, j1, .., jl ∈ {1, ..k}.
We denote by Dom(Σ) the class of these pairs (D, I). We associate to each pair (D, I) ∈
Dom(Σ) the process PI

D ∈ P defined by PI
D ≡ α1.0|...|αk.0 | αi1 .α j1 .0|...|αil .α jl .0.

Reverse, consider a process P ∈ P for which there exists α1, ...αk ∈ Σ, not necessarily
distinct, and i1, ..., il, j1, .., jl ∈ {1, ..k} s.t. P ≡ α1.0|...|αk.0 | αi1 .α j1 .0|...|αil .α jl .0.
We take D = {α1, ...αk} and I = {(αi1 , α j1), (αi2 , α j2), ..., (αil .α jl)} and this is the pair we
associate to P. Notice that, by construction, if αi = α j then it appears in D only once
and similarly, if (αis , α js) = (αit , α jt) for some s , t, then it is taken only once in I.

For proving the equivalence between the two decidability problems, we define the
encoding [] that associates each formula of FOL to a formula of S OL1 by
[p(x, y)] = R(x, y)|>; [¬ f] = ¬[f]; [f ∧g] = [f]∧[g]; [∃x. f] = ∃x.((D(x)|>)∧[f]).

Lemma 8. (D, I), v |= f iff PD
I , v |= [f].

2 The same fragment of first order logic is used in [4] for proving the undecidability of S OL4.

Proof. We prove it by induction on f ∈ FOL. The non-trivial cases are:
The case f = ∃x.g: (D, I), v |= ∃x.g iff there exists α ∈ D s.t. (D, I), v{x→α} |= g.

Further, the inductive hypothesis gives PD
I , v{x→α} |= [g]. But because PD

I ≡ α.0|P′,
we obtain that PD

I , v{x→α} |= D(x)|>. Hence PD
I , v{x→α} |= D(x)|> ∧ [g] that implies

PD
I , v |= ∃x.(D(x)|> ∧ [g]) that is equivalent with PD

I , v |= [f].
The case f = p(x, y): (D, I), v |= p(x, y) iff (v(x), v(y)) ∈ I. But this is equivalent

with PD
I ≡ v(x).v(y).0|P′ that implies PD

I , v |= (1 ∧ 〈x〉〈y〉.0)|>, i.e. PD
I , v |= [f].

Lemma 9. Let f be a closed formula of FOL. Then f is satisfiable in FOL iff Model ∧
[f] is satisfiable in S OL1.

Proof. Model characterizes the class P of processes. So, if there exists a model (D, I) ∈
Dom(Σ) such that (D, I), ∅ |= f , then PD

I , ∅ |= Model ∧ [f], where ∅ is the empty
valuation. Reverse, if there is a process P ∈ P that satisfies Model ∧ [f], then P, ∅ |=
Model, i.e. P ∈ P meaning that there exists (D, I) ∈ Dom(Σ) such that P ≡ PD

I . Then
PD

I , ∅ |= [f] that implies (D, I), ∅ |= f .

Theorem 1. For S OL1 validity and satisfiability are undecidable.

This result implies the undecidability of satisfiability for the more expressive logics.

Corollary 1. The satisfiability is undecidable for S OL2 and S OL3.

4.2 The model-checking problem

With model checking the situation is different. The simple presence of second order
quantification does not imply undecidability, as for the case of satisfiability.

Theorem 2. For S OL2 model checking is decidable.

Proof. Observe that for arbitrary P, φ, v′ and α, β < Act(P)∪dom(v′), we have P, v′
{x→α} |=

φ iff P, v′
{x→β} |= φ. Due to this property, for deciding P, v |= φ it is sufficient to only con-

sider the valuations assigning values from Act(P)∪{α1, ..., αk} to the free variables of φ,
where αi < Act(P) for i = 1..k and k is the number of distinct variables that appear in φ.
Further, one can prove that the operators can be eliminated inductively, and the model-
checking problem can be reduced, at each step, to a finite number of model-checking
problems involving the subprocesses of P (which are finitely many, modulo structural
congruence) and the subformulas of φ.

Corollary 2. The model-checking problems for S OL1 and S OL0 are decidable.

The presence in a logic of the operator>.φ is sufficient to make the model-checking
problem undecidable. Notice that P, v |= > . φ involves a universal quantification over
the class of upper processes of P.

Theorem 3. For S OL3 model checking is undecidable.

Proof. The proof is based on the observation, emphasized also in [11], that in any logic
which can express > .φ, the decidability of model-checking problem implies the decid-
ability of satisfiability. Hence, the undecidability of satisfiability implies undecidability
of model checking. Indeed, for an arbitrary formula φ in S OL3, it is trivial to verify that
|= φ iff 0, ∅ |= > . φ. As for S OL3 validity is undecidable, we obtain undecidability for
model checking.

5 Decision problems for Propositional Modular Logics

In this section we focus on propositional modular logics. In [4] it has been proved
that for PML4 satisfiability, validity and model checking are undecidable against the
semantics presented in Section 3. The proof is based on the equivalence between the
satisfiability problems for S OL4 and PML4. The result reveals that the combination
of the modality � based on τ-transition with the modular operators | and ., generates
undecidability.

In this section we show that the combination of the two modular operators and a
transition-based modality does not always produce undecidability. We will show that
for PML2 and PML3 both the satisfiability/validity and model-checking problems are
decidable. PML2 contains dynamic operators indexed by actions 〈α〉 that reflect the
interleaving semantics of CCS. PML3 is closer to PML4 as it expresses communications
by the dynamic operators 〈α, α〉. But while the communications reflected by � have an
anonymous status, the communications expressible in PML3 can also specify the pairs
of actions involved. Observe that � can be seen as an existential quantifier over the
class of 〈α, α〉 and in this sense PML4 has a second-order nature that might explain its
undecidability.

In the second part of the section we consider the logic PML1 which combines �
with the parallel operator. We prove that for this logic model checking is decidable.
However, the satisfiability for PML1 is an open problem.

5.1 Decidability of PML2 and PML3

We prove that for PML2 and PML3 satisfiability/validity problems are decidable. The
proofs are based on the bounded model property technique which consists in showing
that, given a formula φ of PML2 or PML3, we can identify a finite class of processes
Pφ, bound by the dimension of φ, such that if φ has a model in P, then it has a model
in Pφ. Thus, the satisfiability problem in P is equivalent with the satisfiability in Pφ.
This result can be further used to prove the decidability of satisfiability for the two
logics. Indeed, as Pφ is finite, checking the satisfiability of a formula can be done by
exhaustively verifying it for all the processes in Pφ.

The method adapted for modular logics was first proposed in [6] and reused in [5]
for the case of static ambient logic. It consists in identifying a structural equivalence on
processes, sensitive to the dimension of the logical formulas, that relates two processes
whenever they satisfy the same formulas of a given size. In our case this relation is the
structural bisimulation defined in Section 2.

Definition 10 (Size of a formula). The sizes of a formula of PML3, denoted by LφM =

(h,w), is defined inductively assuming that LφM = (h,w) and LψM = (h′,w′), as follows.

1. L0M
de f
= (1, 1). 2. L¬φM

de f
= LφM.

3. Lφ ∧ ψM
de f
= (max(h, h′),max(w,w′)). 4. L〈α〉φM

de f
= (h + 1,w + 1).

5. Lφ . ψM
de f
= (max(h, h′),w + w′). 6. Lφ|ψM

de f
= (max(h, h′),w + w′).

7. L〈α, α〉φM
de f
= (h + 2,w + 2).

Definition 11. The set of actions of a formula φ, act(φ) ⊆ Σ is given by:

1. act(0)
de f
= ∅ 2. act(¬φ) = act(φ)

3. act(φ ∧ ψ)
de f
= act(φ) ∪ act(ψ) 4. act(〈α〉φ)

de f
= {α} ∪ act(φ)

5. act(φ . ψ)
de f
= act(φ) ∪ act(ψ) 6. act(φ|ψ)

de f
= act(φ) ∪ act(ψ)

7. act(〈α, α〉φ)
de f
= {α, α} ∪ act(φ).

The next Lemma states that a formula φ of PML2 or PML3 expresses a property of
a process P up to ≈act(φ)

LφM . A sketch of its proof can be found in Appendix.

Lemma 10. The next assertion is true for PML2 and PML3.
If P ≈act(φ)

LφM Q, then [P |= φ iff Q |= φ].

This result guarantees the bounded model property for both PML2 and PML3.

Theorem 4 (Bounded model property). For PML2 and PML3,
if P |= φ, then there exists Q ∈ Pact(φ)+

LφM such that Q |= φ.

Theorem 5 (Decidability). For PML2 and PML3 validity and satisfiability are decid-
able against process semantics.

Proof. The decidability of satisfiability derives, for both logics, from the bounded model
property. Indeed, if φ has a model, by Lemma 4, it has a model in Pact(φ)+

LφM . As act(φ) is

finite, Pact(φ)+

LφM is finite. Hence, checking for membership is decidable.

5.2 The model-checking problems

We focus now on the model-checking problems. We start by stating the decidability of
model checking for PML2 and PML3.

Theorem 6. For PML2 and PML3 model checking is decidable.

Proof. Given the process P and the formula φ, we show inductively on the structure of
φ that P |= φ is decidable, by showing that the problem can be reduced, step by step,
to a finite number of model checking problems involving subformulas of φ. The only
interesting case is φ = φ1 . φ2. Due to the bounded model property, P |= φ1 . φ2 iff for
any Q ∈ Pact(φ1)+

Lφ1M
we have that Q |= φ1 implies P|Q |= φ2. As there are only a finite

number of processes Q ∈ Pact(φ1)+

Lφ1M
, we are done.

Theorem 7. For PML1 model checking is decidable.

Proof. As before, we reduce the problem P |= φ to a finite number of model checking
problems involving subprocesses of P (we do not have .) and subformulas of φ. The
only difference w.r.t. PML2 or PML3 is case φ = �ψ. We have P |= �ψ iff there exists
a transition P

τ
−→ P′ such that P′ |= ψ. But the number of processes P′ such that

P
τ
−→ P′ is finite modulo structural congruence. Hence, also in this case, the problem

can be reduced to a finite number of model checking problems that refers to ψ.

6 Conclusive remarks

The goal of this paper was to present the taxonomy in Table 1. The results improve the
state of the arts: the undecidability of satisfiability of S OL1 explains the undecidability
of S OL4 reported in [4] and the undecidability of model checking of S OL3 is linked to
the undecidability of model checking for S OL4. The results on propositional modular
logics are, to the best of our knowledge, original. The decidability of PML3 shows
that the communication in combination with the modular operators is not necessarily
undecidable. The decidability of S OL2 is useful for applications in which interleaving
semantics is relevant. Notice that, in light of Table 1, the undecidability of satisfiability
seems generated either by the combination of second order quantifiers with >|φ, or by
the combination of � and .. Undecidability of model checking seems generated by the
presence of > . φ in the context of undecidable satisfiability.

For future work we intend to extend these results for more complex frameworks,
especially for the case of stochastic and probabilistic systems. We are interested in
studying the decision problems for the case of Markovian Logics [8, 9]. These are com-
plex logics for stochastic/probabilistic systems with modular properties. They can be
used to specify properties of, e.g., stochastic-CCS processes [10] and they enjoy most
of the properties established for modular logics.

References

1. J. van Benthem, Language in action. Categories, Lambdas and Dynamic Logic. Elsevier
Science Publisher, 1991

2. J.A. Bergstra, A. Ponse, S.A. Smolka (eds.), Handbook of Process Algebra. Elsevier, 2001.
3. L. Caires and L. Cardelli, A Spatial Logic for Concurrency (Part I). Inf. and Comp. 186/2,

2003.
4. L. Caires and E. Lozes, Elimination of Quantifiers and Decidability in Spatial Logics for

Concurrency. In Proc. of CONCUR’2004, LNCS 3170, 2004.
5. C. Calcagno, L. Cardelli and A. D. Gordon, Deciding validity in a spatial logic for trees.

Journal of Functional Programming, 15, 2005.
6. C.Calcagno, et al. Computability and complexity results for a spatial assertion language for

data structures. In Proc. of FSTTCS01, LNCS 2245, 2001.
7. L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients. In

Proc. of 27th ACM Symposium on Principles of Programming Languages, 2000.
8. L. Cardelli, K. G. Larsen, R. Mardare. Continuous Markovian Logics - From Complete Ax-

iomatization to the Metric Space of Formulas. In Proc. of Computer Science Logic CSL
2011.

9. L. Cardelli, K. G. Larsen, R. Mardare. Modular Markovian Logic. in Proc. ICALP 2011.
10. L. Cardelli, R. Mardare. The Measurable Space of Stochastic Processes. QEST 2010, IEEE

Press, 2010.
11. W. Charatonik, J.M. Talbot, The decidability of model checking mobile ambients. In Proc. of

CSL, LNCS 2142, 2001.
12. M. Dam, Model checking mobile processes. Inf. and Comp. 129(1), 1996.
13. V. Gyuris, Associativity does not imply undecidability without the axiom of Modal Distribu-

tion. In M. Marx, et.al eds., Arrow Logic and Multi-Modal Logic, CSLI and FOLLI, 1996.
14. M. Hennessy, R. Milner, Algebraic laws for Nondeterminism and Concurrency. JACM 32(1),

1985.

15. R. Mardare, Logical analysis of Complex Systems. Dynamic Epistemic Spatial Logics. PhD
thesis, DIT, University of Trento, 2006.

16. R. Mardare, Observing distributed computation. A dynamic-Epistemic approach. In Proc.
CALCO’07, LNCS 4624, 2007.

17. R. Mardare, C. Priami, A logical approach to security in the context of Ambient Calculus.
Electronic Notes in Theoretical Computer Science, N 99:3-29, 2004.

18. R. Mardare, C. Priami. A Propositional Branching Temporal Logic for the Ambient Calculus.
Tech.Rep. DIT-03-053, University of Trento, Italy, 2003.

19. R. Mardare, C. Priami, Decidable extensions of Hennessy-Milner Logic. In Proc. FORTE’06,
LNCS 4229, 2006.

20. R. Mardare, A. Polocriti, A Complete Axiomatic System for a Process-based Spatial Logic.
In Proc. MFCS’08, LNCS 5168, 2008.

21. R. Milner, A Calculus of Communicating Systems. Springer-Verlag New York, Inc., 1982.
22. R. Milner, J. Parrow and D. Walker, Modal logics for mobile processes. TCS 114, 1993.
23. D. Sangiorgi, Extensionality and Intensionality of the Ambient Logics. In Proc. of the 28th

ACM Annual Symposium on Principles of Programming Languages, 2001.
24. C. Stirling, Modal and temporal properties of processes. Springer-Verlag New York, Inc.,

2001.
25. A. Urquhart, Semantics for Relevant Logics. Journal of Symbolic Logic, 37(1), 1972.

Appendix

In this appendix we present some of the proofs of the main lemmas presented in the
paper.

Proof (Proof of Lemma 2).
2. We prove it by induction on h. The case h = 0 is immediate.

For the case h + 1, suppose that P ≈Ω(h+1,w) P′ and Q ≈Ω(h+1,w) Q′.
Consider any i = 1..w, and any α ∈ Ω such that P|Q ≡ α.R1|...|α.Ri|Ri+1. Suppose,

without loss of generality, that R j are ordered in such a way that there exist k ∈ 1..i,
P′′,Q′′ such that P ≡ α.R1|...|α.Rk |P′′, Q ≡ α.Rk+1|...|α.Ri|Q′′ and Ri+1 ≡ P′′|Q′′. Be-
cause k ∈ 1..w, from P ≈Ω(h+1,w) P′ we have P′ ≡ α.P′1|...|α.P

′
k |P0 such that R j ≈

Ω
(h,w) P′j

for j = 1..k. Similarly, from Q ≈Ω(h+1,w) Q′ we have Q′ ≡ α.Q′k+1|...|α.Q
′
i |Q0 such that

R j ≈
Ω
(h,w) Q′j for j = (k + 1)..i. Hence, P′|Q′ ≡ α.P′1|...|α.P

′
k |α.Q

′
k+1|...|α.Q

′
i |P0|Q0 with

R j ≈
Ω
(h,w) P′j for j = 1..k and R j ≈

Ω
(h,w) Q′j for j = (k + 1)..i.

Proof (Proof of Lemma 4).
We prove it by induction on h. The case h = 0 is trivial.

The case h + 1: Suppose that P′|P′′ ≈Ω(h+1,w) Q. Let w = w1 + w2.
Following an idea proposed in [5], we say that a process P is in Ω(h,w)-normal form

if whenever P ≡ α1.P1|α2.P2|P3 for α1, α2 ∈ Ω and P1 ≈
Ω
(h,w) P2 then P1 ≡ P2. Note

that P ≈Ω(h+1,w) α1.P1|α2.P1|P3. This shows that for any P, any Ω and any (h,w) we can
find a P0 such that P0 is in (h,w)-normal form and P ≈Ω(h+1,w) P0.

We can suppose, without loosing generality, that the canonical representations of
P′, P′′ and Q are3: P′ ≡ (α1.P1)k′1 |...|(αn.Pn)k′n |P1, P′′ ≡ (α1.P1)k′′1 |...|(αn.Pn)k′′n |P2 and

3 Else we can replace P′, P′′ with (h + 1,w)-related processes having the same (h,w)-normal
forms

Q ≡ (α1.P1)l1 |...|(αn.Pn)ln |Q1, where P1, P2,Q1 have all the guarded subprocesses pre-
fixed by actions that are not in Ω. For each i ∈ 1..n, we split li = l′i + l′′i in order to
obtain a splitting of Q. We define the splitting of li such that (αi.Pi)k′i ≈Ωh+1,w1

(αi.Pi)l′i

and (αi.Pi)k′′i ≈Ωh+1,w2
(αi.Pi)l′′i . We do this as follows:

If k′i + k′′i < w1 + w2 then P′|P′′ ≈Ωh+1,w Q implies li = k′i + k′′i , so we can choose
l′i = k′i and l′′i = k′′i .

If k′i +k′′i ≥ w1 +w2 then P′|P′′ ≈Ωh+1,w Q implies li ≥ w1 +w2. We meet the following
subcases:

– k′i ≥ w1 and k′′i ≥ w2. We choose l′i = w1 and l′′i = li −w1 (note that as li ≥ w1 + w2,
we have l′′i ≥ w2).

– k′i < w1, then we must have k′′i ≥ w2. We choose l′i = k′i and l′′i = li − k′i . So l′′i ≥ w2
as li ≥ w1 + w2 and l′i < w1.

– k′′i < w2 is similar with the previous one. We choose l′′i = k′′i and l′i = li − k′′i .

Now, for Q′ ≡ (α1.P1)l′1 |...|(αn.Pn)l′n and Q′′ ≡ (α1.P1)l′′1 |...|(αn.Pn)l′′n , the result is veri-
fied.

Proof (Proof of Lemma 5).
Because P ≈Ω(h,w) Q, α ∈ Ω and P ≡ α.P′|P′′, we obtain that Q ≡ α.Q′|Q′′ with

P′ ≈Ω(h−1,w) Q′. We prove that P′|P′′ ≈Ω(h−1,w−1) Q′|Q′′.
Consider β ∈ Ω and i = 1..w−1 such that: P′|P′′ ≡ β.P1|...|β.Pi|P?. We can suppose

that, for some k ≤ i, we have P′ ≡ β.P1|...|β.Pk |P+, P′′ ≡ β.Pk+1|...|β.Pi|P− and P? ≡

P+|P−. Because P′ ≈Ω(h−1,w) Q′ and k ≤ i ≤ w − 1, we obtain that Q′ ≡ β.Q1|...|β.Qk |Q+

with P j ≈
Ω
(h−2,w) Q j for j = 1..k. Further we distinguish two cases.

1. If α , β, then we have P ≡ β.Pk+1|...|β.Pi|(P−|α.P′) and because P ≈Ω(h,w)

Q, we obtain Q ≡ β.Rk+1|...|β.Ri|R? with R j ≈
Ω
(h−1,w) P j for j = k + 1..i. But Q ≡

α.Q′|Q′′ and because α , β, we obtain Q′′ ≡ β.Rk+1|...|β.Ri|R+ that gives us in the end
Q′|Q′′ ≡ β.Q1|...|β.Qk |β.Rk+1|...|β.Ri|(R+|Q+), with P j ≈

Ω
(h−2,w) Q j for j = 1..k (hence,

P j ≈
Ω
(h−2,w−1) Q j) and P j ≈

Ω
(h−1,w) R j for j = k + 1..i (hence, P j ≈

Ω
(h−2,w−1) R j).

2. If α = β, then we have P ≡ α.Pk+1|...|α.Pi|α.P′|P− and as P ≈Ω(h,w) Q and i ≤ w−1,
we obtain Q ≡ α.Rk+1|...|α.Ri|α.R′|R?, with R j ≈

Ω
(h−1,w) P j for j = k + 1..i and R′ ≈Ω(h−1,w)

P′. Because P′ ≈Ω(h−1,w) Q′ and ≈Ω(h,w) is an equivalence relation, we can suppose that4

R′ ≡ Q′ . Consequently, Q ≡ α.Rk+1|...|α.Ri|α.Q′|R? that gives Q′′ ≡ α.Rk+1|...|α.Ri|R?,
which entails further Q′|Q′′ ≡ α.Q1|...|α.Qk |α.Rk+1|...|α.Ri|(R?|Q+) with P j ≈

Ω
(h−2,w) Q j

for j = 1..k (hence, P j ≈
Ω
(h−2,w−1) Q j) and P j ≈

Ω
(h−1,w) R j for j = k + 1..i (hence,

P j ≈
Ω
(h−2,w−1) R j).

All these prove that P′|P′′ ≈Ω(h−1,w−1) Q′|Q′′.
The communication case goes similarly.

Proof (Proof of Lemma 6). We construct Q inductively on h. For the case P ≡ 0 we
take Q ≡ P, as 0 ∈ PΩ

+

(h,w).

4 Indeed, if α.Q′ is a subprocess of R? then we can just substitute R′ with Q′; if α.Q′ ≡ α.Rs,
then Q′ ≈Ω(h−1,w) Ps and as Q′ ≈Ω(h−1,w) P′ and P′ ≈Ω(h−1,w) R′ we derive R′ ≈Ω(h−1,w) Ps and
Q′ ≈Ω(h−1,w) P′, so we can consider this correspondence.

Suppose P . 0. Let β = succ(sup(Ω)). In the case h = 0 we just take Q ≡ β.0.
The case h + 1. Suppose, without loss of generality, that

P ≡ (α1.P1)k1 |...|(αn.Pn)kn |(γn+1.Pn+1)kn+1 |...|(γn+m.Pn+m)kn+m

where α1, ..αn ∈ Ω with αi.Pi . α j.P j for i , j, and γn+1, ..γn+m ∈ Σ \ Ω with γi.Pi .
γ j.P j for i , j.

Let P′j for j = 1..n be the processes constructed at the previous inductive step
such that P j ≈

Ω
(h,w) P′j with P′j ∈ P

Ω+

(h,w) - their existence is guaranteed by the inductive
hypothesis. Let li = min(ki,w) and consider the process P′ ≡ (α1.P′1)l1 |...|(αn.P′n)ln |β.0.
It is trivial to verify that P′ is a process that fulfills the requirements of the lemma, i.e.
P ≈Ω(h,w) P′ and P′ ∈ PΩ

+

(h,w).

Proof (Proof of Lemma 10). Induction on the structure of φ. We show here only the
nontrivial cases.

The case φ = 〈α〉ψ: P |= 〈α〉ψ iff P
α
−→ P′ and P′ |= ψ. Suppose that LψM = (h,w).

Then LφM = (h + 1,w + 1). Because α ∈ act(φ) and P ≈act(φ)
(h+1,w+1) Q, we obtain applying

Lemma 5 that Q
α
−→ Q′ and P′ ≈act(φ)

(h,w) Q′. We can apply the inductive hypothesis, as
P′ |= ψ and we obtain Q′ |= ψ. Then Q |= φ.

The case φ = 〈α, α〉ψ: can be prove as the previous one using the second part of
Lemma 5.

The case φ = ψ1|ψ2: P |= ψ1|ψ2 iff P ≡ S |R, S |= φ1 and R |= ψ2. Suppose that
Lψ1M = (h1,w1) and Lψ2M = (h2,w2). Then LφM = (max(h1, h2),w1 + w2). Applying
Lemma 4 for P ≈act(φ)

(max(h1,h2),w1+w2) Q, we obtain that Q ≡ S ′|R′ such that S ≈act(φ)
(max(h1,h2),w1)

S ′ and R ≈act(φ)
(max(h1,h2),w2) R′. Further Lemma 3 gives S ≈act(ψ1)

(h1,w1) S ′ and R ≈act(ψ2)
(h2,w2) R′.

Further, the inductive hypothesis gives S ′ |= ψ1 and R′ |= ψ2, i.e. Q |= ψ1|ψ2.
The case φ = ψ1 . ψ2: P |= ψ1 . ψ2 iff any R |= ψ1 implies P|R |= ψ2. But P ≈act(φ)

LφM Q

and R ≈act(φ)
LφM R implies, by Lemma 2, that P|R ≈act(φ)

LφM Q|R. Further P|R ≈act(ψ2)
Lψ2M

Q|R and
because P|R |= ψ2, we can apply the inductive hypothesis deriving Q|R |= ψ2. Hence,
R |= ψ1 implies Q|R |= ψ2, i.e., Q |= ψ1 . ψ2.

